Small-Ball Probabilities for the Volume of Random Convex Sets

نویسندگان

  • Grigoris Paouris
  • Peter Pivovarov
چکیده

We prove small-deviation estimates for the volume of random convex sets. The focus is on convex hulls and Minkowski sums of line segments generated by independent random points. The random models considered include (Lebesgue) absolutely continuous probability measures with bounded densities and the class of log-concave measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorems and Bootstrap in High Dimensions

This paper derives central limit and bootstrap theorems for probabilities that sums of centered high-dimensional random vectors hit hyperrectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for probabilities P(n−1/2 ∑n i=1 Xi ∈ A) where X1, . . . , Xn are independent random vectors in R and A is a hyperrectangle, or, more generally, a sparsely conve...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

The volume preserving crystalline mean curvature ow of convex sets in R

We prove the existence of a volume preserving crystalline mean curvature at ow starting from a compact convex set C ⊂ R and its convergence, modulo a time-dependent translation, to a Wul shape with the corresponding volume. We also prove that if C satis es an interior ball condition (the ball being the Wul shape), then the evolving convex set satis es a similar condition for some time. To prove...

متن کامل

Deviations of Ergodic Sums for Toral Translations I. Convex Bodies

We show the existence of a limiting distribution D of the adequately normalized discrepancy function of a random translation on a torus relative to a strictly convex set. Using a correspondence between the small divisors in the Fourier series of the discrepancy function and lattices with short vectors, and mixing of diagonal flows on the space of lattices, we identify D with the distribution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2013